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Abstract—Perception processing in cyber-physical systems
(CPS) is now almost exclusively done using Deep Neural Net-
works (DNNs). Here, camera, radar and LiDAR data – in
autonomous vehicles or robots – is fed into DNNs that detect
surrounding obstacles and distances to them. These results are
used by controllers to compute appropriate actuation signals.
But a CPS typically has multiple state components, where each
of them might be estimated using a different camera, radar or
lidar and an associated DNN. Hence, an emerging problem is
to implement multiple DNNs on a resource-constrained graphics
processing unit (GPU). While many GPUs from NVIDIA and
AMD allow them to be split into multiple virtual GPUs, there
is little work on how to partition them, and therefore size the
corresponding DNNs, when they are a part of the same CPS.
In contrast to the existing practice of focusing on the inference
accuracy of individual DNNs in isolation, we propose a system-
level safety-driven DNN sizing (and hence GPU partitioning)
scheme for vehicular CPS. Our main technical contribution is
a detailed experimental evaluation of this DNN sizing approach
and an empirical validation of the formal technique behind it.

I. INTRODUCTION AND RELATED WORK

In implementing cyber-physical systems (CPS), we study
the problem of sizing multiple Deep Neural Network (DNN)
models that are a part of the same CPS. The CPS software
implements a feedback controller that gets state estimates as
input and computes actuation signals based on the estimated
state of the plant (such as a car or a robot arm) and the desired
behavior to be imposed on it. The state estimates are inferences
from Deep Neural Networks (DNNs), which are fed by sensors
such as cameras, radars and LiDARs. Since the state x of
the plant being controlled can have multiple components, i.e.,
x = [x1, ..., xk], each component xi might be estimated by a
different DNN. How should such DNNs be implemented on
a shared graphics processing unit (GPU)? While this question
arises in many CPSs such as robotics and manufacturing, it
is more pronounced in the domain of autonomous vehicles
because of their safety critical nature.

Many modern GPUs from NVIDIA (such as the A40 and
the L40) and ARM allow themselves to be partitioned into
multiple virtual GPUs, which is an attractive feature for
the setting outlined above. Hence, how should be the DNN
associated with each state component xi be sized so that all
the DNNs fit inside the available GPU? Designing DNNs
for resource-constrained platforms has attracted considerable
attention [1]–[3]. Similarly, techniques for neural architecture
search have also been extensively studied [4]. In parallel,
techniques for GPU partitioning to concurrently implement
multiple DNNs have also been explored [5], [6]. However,
almost all existing studies on DNN sizing have focused on
improving the inference accuracy of a DNN in isolation.
They do not consider the impact of the sizing decision on
the overall safety and performance of the CPS and further
that all the DNNs share the same the same computational re-
sources. While control theorists have proposed techniques for

accurate state estimation from noisy measurements obtained
from DNNs, they do not explicitly study the effect of these
uncertainties on the overall system behavior or quantify it.
Our contributions: In this paper we attempt to address this
gap by proposing a system-safety driven sizing of the DNNs
responsible for estimating the different state components of
a CPS, while taking into account the capacity of the shared
GPU on which these DNNs are implemented. Our approach is
based on the observation that the accuracies of different state
components have different impacts on the overall safety of
the CPS. This depends on the dynamics of the system. Hence,
state components that have a bigger influence on system safety
need to be more accurately estimated, and therefore should be
assigned proportionately larger DNNs. While our method is
oblivious to the notion of safety being used, in this paper we
use a very general form of system safety. It is measured by the
distance between the trajectory of the closed-loop system in
its state space and the trajectory of the ideal system in which
all the state components are always accurately estimated.

This paper builds on our recent work [7], where we studied
different heuristics for determining the sensitivity of different
state components on the safety of a closed-loop control system.
However, there are several differences. First, the study in [7]
used the size of the reachable set of the closed-loop system
as a measure of safety. In contrast, the distance between the
real and the ideal system trajectory – as we use in this paper
– provides a notion of safety with a more concrete physical
interpretation. Second, and more importantly, the study in this
paper deals with nonlinear systems, whereas the one in [7]
was restricted to the much simpler case of linear systems.
Third, and most importantly, the primary focus of this paper
is an experimental evaluation and an empirical validation of
our hypothesis particularly in the domain of automotive CPS.
Towards this, we have implemented our DNN sizing approach
to choose DNNs used for estimating the lane width, vehicle
position and orientation of a F1TENTH vehicle [8] and vali-
dated our hypothesis using the F1TENTH Gym environment.
Our results show that in contrast to the commonly followed
approach of using bigger GPUs, appropriate DNN sizing has
an oversized impact on system safety.
Paper organization: Section II outlines the necessary mathe-
matical background and introduces our DNN sizing approach.
This is followed by the main results of this paper in Sec-
tion III: the empirical validation of our hypothesis driving the
sizing approach. We conclude the paper by discussing some
directions for future work in Section IV.

II. BACKGROUND AND METHODOLOGY

A. Background: System Model and Problem Statement

Autonomous systems interacting with the environment are
modeled as nonlinear ordinary differential equations (ODEs)
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with inputs ẋ = f(x, u). Here, important aspects of au-
tonomous system behavior such as position and acceleration
are modeled as continuous variables and the description of all
these components is called as a state, denoted as x ∈ Rn.
The system’s behavior can be guided by applying appropriate
control input u ∈ Rd. To achieve a desired behavior from the
system, a widely used technique is design a feedback control,
where the control input u is a function g(x) of the current
state x. Under such feedback, the behavior of the system is
defined a solution of the nonlinear ODE ẋ = f(x, g(x)). The
solutions of the ODE that describe the state of the system after
time t starting from intial state x are called the trajectories,
denoted as ξ(x, t) or ξ(t).

Traditionally, the state x is obtained by applying Kalman
filtering on the data from sensors. In modern autonomous
systems, the state estimation x is performed using deep
neural networks (DNNs) over high dimensional inputs such
as cameras and LiDAR. These DNNs do not return the exact
state x, but rather produce an estimate x̂ ≈ x. Substituting the
feedback from the estimated state x̂ instead of the true state
would result in the nonlinear ODE ẋ = f(x, g(x̂)). We denote
trajectories with feedback calculated using x̂ as ξ̂(x, t) or ξ̂(t).

For estimating every component xi of the state, an au-
tonomous system designer can deploy a wide range of DNNs.
In this paper we assume that each state variable xi can be
estimated using j DNNs NN1, . . . ,NNj where each successive
DNN would require more resources than the previous one.
Conventional wisdom is that using a larger DNN results in
better state estimation, i.e., lower value of |x̂ − x|. However,
the designer is constrained by computational resources and
therefore cannot assign the most accurate DNN for sensing all
the state components. Furthermore, assigning a lower accuracy
DNN for estimating a state component could potentially lead
to a large deviation between ξ and ξ̂, which would compromise
the safety of the system. We say that a system is unsafe if the
deviation between the ideal and real behavior cross a safety
threshold, |ξ̂ − ξ| > d. The system designer has to assign an
appropriate DNN for estimating state components that is safe
and computationally feasible.

B. Proposed Technique: Sensitivity Analysis for DNN Sizing

We use sensitivity analysis to determine the appropriate
DNN for state estimation of each state component. Sensitivity
analysis, broadly speaking, quantifies the effect of an uncer-
tainty on the system trajectory. Since performing sensitivity
analysis on nonlinear system is very challenging, we first
linearize the system dynamics, i.e., construct a linear approx-
imation of the nonlinear system. We then perform sensitivity
analysis on the linearized system and obtain an ordering on
the sensitivity of each state component. This ordering on the
sensitivity can be used to assign the appropriate DNN for each
state component.

1) Linearization of System Dynamics with Uncertainties:
We first substitute the DNN state estimate x̂ = x+ δx in the
nonlinear ODE, which gives us ẋ = f(x, g(x + δx)). Here,
δx represents the difference between the estimated state x̂ and
real state x, that can be modeled as accuracy of the neural
network. While f(x, g(x + δx)) is a nonlinear function, we

expand it and collect all the terms without δx as f̃ and and
consider only first order terms in δx as h(x)δx resulting in
the following equation.

ẋ = f̃(x) + h(x)δx. (1)

We linearize the function f̃ and h around the equilibrium
0, resulting in the following linear approximation.

ẋ =
∂

∂x
f̃
∣∣∣
0
x+ f̃(0) +

∂

∂x
h
∣∣∣
0
xδx+ h(0)δx (2)

The system is stable around the operating point; that is, the
closed loop dynamics f̃(0) and h(0) evaluate to 0. Therefore,
the system behavior is often dominated by the the Jacobian
∂
∂x f̃ of the nonlinear function f̃ denoted as A and the
uncertainty denoted as ∂

∂xhδx denoted as Bδx. The linear
approximation of the dynamics and the effect of incorrect state
estimate δx is given as:

ẋ = (A+Bδx)x. (3)

2) Sensitivity Analysis of Linear Dynamical Systems: While
typical linear dynamics are of the form ẋ = Ax, the effect of
estimation uncertainties on the dynamics is modeled as Bδx
term in Equation 3. Therefore, the distance between the ideal
and real trajectories |ξ̂(t)− ξ(t)| can be approximated as the
distance between the trajectories of system in Equation 3 and
the dynamical system ẋ = Ax. Using the closed form expres-
sion for the solution of linear dynamical systems the deviation
|ξ̂−ξ| ≈ |(e(A+Bδx)t−eAt)x|, where eM = I+M

1! +
M2

2! +. . .
is called matrix exponential.

Since eAt remains unchanged, the deviation is said to
be large if the matrix norm of eA+Bδx is large. Therefore,
uncertainties in state component δxi that increase the matrix
norm of A + Bδx by a larger amount are considered more
sensitive. Since the matrix exponential is a nonlinear function
that is challenging to analyze, instead of calculating the exact
matrix norm, we observe the change in singular values of
A + Bδx for different uncertainties δx. That is, given an
uncertainty in state component δxi, we calculate the change
in singular values for A+Bδxi and the state component that
results in the maximum change in largest singular value will be
ranked as the most sensitive. Therefore the order of sensitivity
of state components xi is the order of the change in largest
singular value of A + Bδxi. As a result of this analysis, we
hypothesize that DNNs that are more accurate should be used
to estimate the state components that are more sensitive.

3) Ordering State Components: The total ordering of the
sensitivity for state components is computed as follows:

1) Expand the term f(x, g(x+ δx)) as f̃(x)+h(x)δx and
ignore the higher order terms in δx.

2) Compute the Jacobian of functions f̃ and h at 0 and
denote them A and B respectively.

3) Compute the change in the singular values of A+Bδxi
for each state component xi and order them according
to the change in the largest singular value.

4) Return the state components ordered according to the
change of singular values as SensitivityOrdering.

Assigning resources in SensitivityOrdering would minimize
the effect of uncertainty on the trajectory and hence minimize
the deviation from the ideal behavior.
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III. EVALUATION OF DNN ALLOCATION AND DISCUSSION

We evaluate the proposed technique for allocating DNN
resources for state estimation on a miniature autonomous
racing platform and present our findings.

A. Vehicle Dynamics
We conduct experiments in the F1TENTH Gym simulation

platform, designed for autonomous systems research with
deterministic and reproducible vehicle dynamics suitable for
reinforcement learning and multi-agent scenarios. For our
experiments, we use the widely used bicycle model for the ve-
hicle dynamics with pure-pursuit controller for navigation [9].
It is a 5 dimensional (x, y, δ, v, ψ) nonlinear system with two
inputs (δu, a). Here, x and y denotes vehicle’s position in
Cartesian coordinates, δ is the steering angle, v is the velocity,
ψ is the vehicle’s orientation relative to the x-axis, uδ is the
change in steering angle, and a is the acceleration respectively.

B. State Estimation Using DNN
The F1TENTH gets a 2-Dimensional LiDAR scan as an

input. Each Scan returns the nearest obstacle from the LiDAR
mount from −135◦ to +135◦ with a resolution of 0.1◦ — a
total of 2700 distance values. Here, 0◦ orientation of LiDAR
is aligned with the longitudinal axis of the vehicle. We imple-
ment a simple algorithm to navigate a 2-dimensional map, that
is, to stay in the middle of the track. For implementing this
algorithm, we need three key parameters: width of the track,
lateral displacement (distance from the end of the track), and
the vehicle orientation. We navigate the F1TENTH vehicle in
a given racing lap and collect the input-output data of LiDAR
scan and the width of the track, lateral displacement, and
vehicle orientation. These estimates will be used to infer the
state estimates for the position x̂, ŷ, and orientation ψ̂.

We implement three specialized DNNs for state estimation:
DNN_wid for track width, DNN_dis for lateral displacement,
and DNN_ang for vehicle orientation respectively. Each net-
work processes 1080-dimensional LiDAR inputs (subsampled
from the 2700 distance values) through optimized 1D con-
volutional architectures. The 1D convolution approach was
selected over 2D alternatives due to its efficiency in processing
sequential LiDAR data while preserving angular relationships.

All networks employ: (1) Exponential Linear Unit (ELU)
activation ELU(x) = max(0, x) + min(0, α(ex − 1)) with
α = 1.0 for smoother gradient flow in deep layers, (2) L2
weight regularization (λ = 0.0001) to prevent overfitting, and
(3) Adam optimization (α = 0.001, β1 = 0.9, β2 = 0.999)
for efficient training convergence.

The architectural progression (a) - (c) (Table I) reflects three
design considerations: (a) smaller network prioritize parameter
efficiency through aggressive pooling, (b) medium architec-
tures balance feature extraction and computational cost using
convolutions, and (c) larger models employ expanded filters
and hidden layers for complex pattern matching. The possible
configurations of DNNs for estimating state components are
provided in Table II; – indicates configuration not considered
because of limited resources on the GPU. We have five DNN
architectures (labeled (a)-(e), 24–596 kB) for width estimation
and three architectures ((a)-(c), 24–192 kB) each for lateral

TABLE I
DNN ARCHITECTURES

Label Size Params Key Architecture Features

(a) 24kB 3,241 Single conv (1 filter), aggressive pooling (8×)
(b) 66kB 16,842 Triple conv blocks, progressive pooling (4,2,4)
(c) 192kB 48,112 Wide conv (8 filters), 32-unit hidden layer
(d) 326kB 92,368 Expanded filters (16), deeper feature extraction
(e) 596kB 152,912 High-capacity (8-16 filters), 64-unit hidden

TABLE II
MEAN SQUARED ERROR (MSE) OF DNNS FOR ESTIMATING WIDTH,

DISTANCE FROM RIGHT WALL, AND ORIENTATION RESPECTIVELY BY SIZE.

DNN Size DNN wid MSE DNN dis MSE DNN ori MSE

(a) (24 kB) 0.8125 0.2323 0.0930
(b) (66 kB) 0.2270 0.0603 0.0760
(c) (192 kB) 0.0247 0.0059 0.0205
(d) (326 kB) 0.0057 – –
(e) (596 kB) 0.0029 – –

displacement and orientation estimation, resulting in a total
of 45 different configurations. Each configuration is denoted
by a three-letter code that specifies the model size used for
each parameter, where, for example, (c)(c)(a) represents size
(c) (192 kB) for width and lateral displacement, and size (a)
(24 kB) for orientation.

C. Sensitivity Analysis on System Parameter
We perform the sensitivity analysis of the dynamics by 1)

expanding the nonlinear feedback system and ignoring the
higher order δx terms, 2) linearizing the dynamics around 0,
and 3) compute the change in the maximum singular value
of the linearized dynamics for each state component. The
sensitivity values of the width and the lateral displacement
is 5.62 and the sensitivity of the orientation is 5.28. This
implies that introducing uncertainty in the width or the lateral
displacement estimates would change the trajectory by a
large amount than introducing uncertainty in the orientation.
Therefore, a principled way to assign computational resources
for DNNs would be to assign a larger DNN to estimate the
width or lateral displacement when compared to estimation of
the orientation. The sensitivity values do not exactly quantify
the effect of uncertainty in a given state estimate, but rather
help us in deriving an ordering among the state components.
Sensitivity analysis could discover Pareto-optimal DNNs siz-
ing 30% of times and close to Pareto-optimal allocation in
all cases for linear dynamics [7]. Therefore, we believe our
allocation would be nearly Pareto-optimal, provided the linear
approximation closely matches the actual dynamics. The exact
resources to be assigned to each state component would have
to be determined empirically.

D. DNN Allocation Results and Analysis
We conducted our experiment on a 10-meter track with

variable width w ranging from 1 to 8 meters. The ini-
tial lateral position for the vehicle is selected from the set
{0.15w, 0.25w, 0.32w, 0.5w, 0.67w, 0.75w, 0.85w} and the
initial orientation is selected from the set {−π/3, 0, π/3}
radians. The control algorithm is designed to bring the vehicle
to the center of the track with orientation parallel to the track.
We observe the trajectory of every DNN configuration for all
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possible initial states (21 of them) for duration of 12 seconds
and record its deviation from the ideal trajectory. We eval-
uate each DNN configuration over two metrics: (1) Average
Deviation, defined as the mean Euclidean distance between
actual and ideal trajectories from different initial conditions;
(2) Average Maximum Deviation, representing the mean of
maximum deviations observed across different trajectories.

We do not provide the metrics for all 45 DNN config-
urations owing to space limitations. Instead, we divide the
DNN configurations into groups where the total computational
resources for DNN in each group would remain same. The
table documenting the evaluation metrics for each group are
presented in Table III. While these are a subsample of the
various DNN configurations, the trends in Table III extend to
all the other configurations that we have considered.

TABLE III
SUMMARY OF NETWORK COMBINATIONS AND PERFORMANCE

DNN wid DNN dis DNN ang Cost Avg. Dev. Max Dev.

Group 1: Cost = 408kB

(c) (c) (a) 408 0.0518 0.0864
(a) (c) (c) 408 0.0686 0.1107
(c) (a) (c) 408 0.0736 0.1113

Group 2: Cost = 324kB

(c) (b) (b) 324 0.0582 0.0998
(b) (c) (b) 324 0.0839 0.1241
(b) (b) (c) 324 0.0863 0.1168

Group 3: Cost = 240kB

(c) (a) (a) 240 0.0625 0.0981
(a) (c) (a) 240 0.0716 0.1097
(a) (a) (c) 240 0.0746 0.1113

Group 4: Cost = 114kB

(b) (a) (a) 114 0.0531 0.0906
(a) (b) (a) 114 0.0919 0.1435
(a) (a) (b) 114 0.1494 0.2118

We highlight two primary observations from Table III.
First, Table III validates our hypothesis that allocating more
computational resources for more sensitive state components
improves the safety metrics. For example, in Group 1, con-
figuration (c)(c)(a) — which uses larger models for width
and lateral displacement estimation and a smaller model
for orientation — achieves the lowest average deviations
and average maximum deviations. In contrast, configuration
(a)(c)(c), which allocates the largest model to orientation and
minimal resources to width, performs substantially worse. A
third combination, (c)(a)(c), further highlights this discrep-
ancy. Other configuration groups in Table III exhibit similar
trends which reinforce our observation that allocating larger
models to width and lateral displacement leads to improved
system safety when compared to emphasizing orientation for
a given computational budget.

Our second observation is that allocating more computa-
tional resources to state estimation (total resources) results
in better safety. Furthermore, appropriate allocation of fewer
computational resources can result in better safety when com-

Fig. 1. Comparison of various DNN configurations over trajectories starting
from 9 different initial positions with the corresponding ideal trajectory. The
DNN configuration is provided with the image.

pared to improper allocation of more resources. For example,
(c)(a)(a) and (c)(b)(b) have lower average deviation and lower
average maximum deviations when compared to (b)(b)(c) and
(a)(c)(c) respectively.

To help visualize the effect of imprecise state estimation
and the deviation from ideal behavior, we present sample
trajectories for three DNN configurations namely (c)(c)(a),
(b)(b)(c), and (a)(a)(b) (at most one from each group in
Table III) in Figure 1. The ideal trajectories are given in blue
and the trajectories where the state estimation is performed
using DNNs are given in red. The difference between ideal and
real trajectories are consistent with the findings in Table III.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a sensitivity analysis based
framework for allocating DNN resources for state estimation.
We hypothesized that allocating more resources for estimating
states that have higher sensitivity would result in better system
safety. We have validated our hypothesis over a bicycle model
of a miniature autonomous racing vehicle. Our sensitivity
analysis revealed that estimation of the track width and lateral
displacement is more important than orientation; which is
confirmed by empirical measurements. Our analysis shows
that sensitivity informed DNN sizing with fewer resources
outperforms improper DNN sizing with more resources.

As a part of future work, we would like to validate our hy-
pothesis over a wide variety of nonlinear systems and explore
the latency and accuracy tradeoff for DNN state estimation. We
also intend to perform evaluation on the physical F1TENTH
platform.
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