Fast Option Ranking in Autonomous Systems for
Criticality Evasion under Uncertainties

Wild-and-Crazy-1dea Paper

Bineet Ghosh', Parasara Sridhar Duggirala*, Samarjit Chakraborty*
"The University of Alabama, Tuscaloosa, USA, bineetQua.edu
*The University of North Carolina at Chapel Hill, Chapel Hill, USA, {psd, samarjit}@cs.unc.edu

Abstract—We study the problem where an autonomous system
is in a critical situation and is faced with multiple options among
which it has to choose to safely evade the criticality. Each of
these options is also associated with some uncertainty. Traditional
approaches from formal methods require a reachability analysis to
evaluate which of the options is safe. While the computational cost
of reachability analysis is well known, the presence of uncertainty
adds an additional layer of complexity. As a result, performing
reachability analysis for all the options before choosing one
will not be feasible due to time constraints. This is a practical
problem that arises is various scenarios, such as an autonomous
vehicle in a potential accident that it has to evade to minimize
damage. While models and algorithms for reachability analysis
have been widely studied, reachability analysis in the presence
of uncertainties have been less so. Despite its many applications,
to the best of our knowledge, the problem of choosing in real-
time, one of the many options for criticality evasion has not been
studied in the past. We address this problem by proposing a
new real-time reachable set computation technique for uncertain
linear systems using techniques from perturbation theory.

Index Terms—Uncertain Linear Systems, Parameterized Systems,
Robust Reachable Sets.

I. INTRODUCTION

Fig. 1 describes the scenario we study in this paper. It de-
picts a fast-moving autonomous vehicle in a factory warehouse
with multiple static and dynamic obstacles. The autonomous
vehicle has to navigate through these obstacles, where there
are no well-defined paths or lanes. Moreover, there are various
types of uncertainties: because of sensor errors, or inference
errors in the machine learning (ML) pipeline that perceives the
surrounding scene, there are locational uncertainties associated
with the various obstacles. There could also be uncertainties
in the dynamics of the autonomous vehicle itself, e.g., due
to the unknown friction coefficient of the floor. Given such a
scenario, how should the autonomous vehicle at the center
of Fig. 1 navigate itself without colliding with any of the
obstacles? In particular, which of the multiple options in
Fig. 1 should it choose? The state-of-the-art approach to
this problem will require performing a reachability analysis
for each of these options to identify one that meets the
required safety properties, e.g., a collision-free trajectory. But
reachability analysis, i.e., computing the set of states reachable
by the system under a chosen dynamics, is known to be
computationally expensive. The presence of uncertainties adds
an additional layer of modeling and computational complexity
to the problem.

979-8-3315-9379-7/25/$31.00 ©2025 IEEE

While there is a considerable volume of literature on reach-
ability analysis, and less work on reachability analysis under
uncertainties, we are not aware of any prior study on fast
ranking of options for criticality evasion, of the form shown in
Fig. 1. This is despite the common occurrence of this scenario,
e.g., when an autonomous vehicle is in a potential accident
and has to very quickly decide among multiple maneuvers to
minimize damage or avoid the accident.

The goal of this paper
is to propose such a
real-time option ranking
strategy, using which the
various available options
could be very quickly
ranked in the order of
being safe with decreasing
likelihood. This way, a
full reachability analysis
could be carried out first
for the options that are
most likely to be safe.
Such a ranking can make a significant difference in many
time- and safety-critical autonomous systems, and also prove
to be invaluable in safety certification. More importantly, our
proposed ranking strategy takes into account the different
uncertainties associated with each option.

possible

uncertainty.

a factory warehouse trying to evaluate differ-
ent trajectories to move without colliding with
other obstacles, which have uncertain dynamics
and possibly also locational uncertainties.

Technical contributions: We consider a continuous-time lin-
ear dynamics of the autonomous system under consideration,
which is described by & = Az, where x € R™ represents the
n-dimensional state vector, and A € R"*™ is the system’s
nominal dynamics matrix. While this equation models the
idealized system behavior, real-world navigation involves a
sequence of decisions or choices (as illustrated in Fig. 1),
each introducing its own form of uncertainty [1]. These
uncertainties are incorporated into the dynamics as additive
perturbations to the nominal matrix A.

Specifically, for a given navigation choice i, the associated
uncertainty is captured by an interval matrix A;, where each
cell is an interval representing a bounded value. Consequently,
the effective system dynamics under choice 7 can be expressed
as © = (A + A;)z, showing how the uncertainties from that
choice affect the system’s evolution.

A concrete example of such a navigation choice is illustrated
in Fig. 2, where a robot on a factory floor must avoid colliding



with a wall (shown in red). This scenario corresponds to a
specific choice ¢ in the robot’s navigation strategy, where the
robot has the option to navigate through a path where there
is an oil spill. Had the robot had a path over a clean floor,
the resulting reachable set of states is shown in light blue.
However, when the robot chooses a path that goes over the
oil spill, additional uncertainty is introduced—reflected by a
larger A,—resulting in a larger reachable set (shown in dark
blue, encompassing the light blue region). This illustrates how
even a single navigation choice can significantly impact the
system’s behavior through its associated uncertainty.

It is worth noting at
this point that the ef-
fective dynamics of the
system under choice 1
is no longer strictly lin-
ear. This is because the
matrix A; is not a point
matrix with fixed val-
ues, but an interval ma-
trix where each entry
represents a range of
possible values. As a result, the system behaves like a special
kind of nonlinear system. Due to this non-linearity, computing
the reachable set for safety verification becomes more ex-
pensive. In fact, such computations often become infeasible
in situations where the autonomous system must make quick
decisions about its navigation, as considered in this work.

In the scenario considered in this work, where an au-
tonomous system must choose between different navigation
paths, each with its own uncertainty, the typical approach
involves blindly computing reachable sets for each choice
to assess its safety. This process is often done without any
guidance on which path to prioritize. That is, there is no
indication of which option is more likely to be safe.

Clearly, having prior information about the safety of each
path would significantly speed up the process of selecting a
safe navigation option. This work aims to address this gap
by providing a mathematical framework that quantitatively
assesses the impact of uncertainty associated with each navi-
gation choice. By doing so, it allows for the ranking of these
choices, enabling more efficient computation of reachable sets
and ultimately improving the problem of navigation choice
exploration.

Given a navigation choice ¢, and the associated uncertainty
A;, we analyze the effect of this uncertainty on the nominal
system dynamics A using results from perturbation theory.
Our goal is to estimate how much the uncertainty perturbs the
reachable set of the system over time. Specifically, we derive
an upper bound on the norm ratio between the reachable set
induced by the nominal dynamics and the additional portion of
the reachable set due to the uncertainty (visually represented
by the dark blue region in Fig. 2).

To understand this in more detail (discussed further in
later sections), consider the following: The reachable set at
time ¢ for the nominal system (i.e., without uncertainty) is

Reachable set with
uncertainties

Reachable set
without
uncertainties

. Robot
Fig. 2: A robot, in a factory floor, trying to
avoid collision with the wall (in red). The set of
states reached by the robot on a clean factory floor
is marked in light blue. The set of states reached
by the robot with an oil spill on the floor is marked
in dark blue (including the region in light blue).

governed by the matrix exponential e'*. When uncertainty is
introduced—encapsulated by the interval matrix A; for choice
i—the dynamics become A + A;, and the reachable set is
described by e(A+2)t However, directly computing the matrix
exponential of an interval matrix is computationally expensive
and often impractical. To avoid this, we instead apply pertur-
bation theory to bound the impact of uncertainty. Specifically,
we bound the norm of the difference He(A““)t — eAtH , and
compare it relative to HeAt , giving us a norm ratio that
quantifies impact of uncertainty on the reachable set. Once this
bound is computed for each available navigation choice, we
use it to prioritize the reachable set computations. Intuitively,
a higher bound indicates that the uncertainty has a greater
impact on the system’s behavior, potentially increasing safety

o risks. Therefore, choices with lower bounds are prioritized, as

they are less likely to result in unsafe outcomes.

In summary, our approach enables efficient navigation
decision-making by ranking choices based on their sensitivity
to uncertainty, without the need for expensive interval matrix
computations. Section IV concludes the paper by outlining
some directions for future work. More details are in [2].

A. Related Work

In [1], a method for efficiently computing the exact reach-
able set of linear dynamical systems with specific uncertainty
classes is presented. Our technique, however, handles arbitrary
uncertainties. In [3], a sampling-based approach for uncer-
tain linear systems is proposed. Unlike this, our method is
independent of the size of uncertainties and does not rely
on sampling. [4] computes reachable sets via discretization
and Zonotope representation, while our method, based on
perturbation theory, provides an analytical solution. In [5],
an algorithm using Zonotopes approximates reachable sets for
uncertain systems. Unlike [1], it does not provide an exact
reachable set. Our contribution is a fast symbolic approach
for ranking of computing reachable sets using perturbation
theory. We also acknowledge works on computing reachable
sets for non-linear systems, such as [6]-[13]. In a slightly
broader setting, this work is also related to our recent efforts
on modeling the impact of timing uncertainties in autonomous
and cyber-physical systems via approximate reachability anal-
ysis [14], [15]. Here, the goal has been to compute the
deviation between the dynamics of a closed-loop system under
ideal timing behavior (e.g., no deadline misses) and that where
the control task occasionally misses its deadline [16]. Such a
deviation is used as a measure of safety and has been used
for schedule synthesis to ensure system safety under deadline
misses [17]-[21], neural network sizing [22], and edge-cloud
partitioning [23].

Paper Organization: The next section is the main technical
contribution of this paper. This is followed by some experi-
mental results to illustrate the utility of our framework.

II. FAST OPTION RANKING

In the early days of studying numerical techniques for
solving ordinary differential equations, there was a significant



interest in bounding the errors introduced by using finite
precision representation of real numbers. Seminal works in
this domain, such as [24] and [25], investigated analytical
methods for computing upper bounds on the sensitivity of
matrix exponential.

Given a linear dynamical system & = Ax and its pertur-
bation £ = (A + E)z, these methods presented expressions
to upper bound the relative distance between the trajectories
of the nominal (unperturbed) and the perturbed system. The
relative distance, denoted by ¢4, (1), is given as:

H e(A+E)t _ eAt ||

bam(t) = e || : (1)
The results presented in [24] and [25] are applicable to
specific, fixed matrices A and E. However, in the context of
our work, each navigation choice is associated with a bounded
range of uncertainty rather than a single fixed value. That
is, the uncertainties corresponding the to navigation choices
are represented using interval matrices A instead of fixed
matrices like E. As a result, we extend the prior results to
handle interval matrices. To do this, we introduce a generalized
formulation that captures the effect of uncertainty over the

entire interval: le(ATEE _ AL

dan)(t) =sup —————— 2
(am(f) = sup gy

To transition from point matrices to interval matrices, we
consider all (infinitely many) possible matrices E contained
within the interval matrix A and take the supremum over the
resulting norms. By building on the analytical expressions
for ¢(4,g)(t) derived in [24] and [25], we derive analogous
expressions for ¢4 )(t) that account for interval uncertainty.
This function ¢4 4)(t) provides a quantitative measure of
the impact of uncertainty associated with a given navigation
choice on the system’s reachable set. A higher value of this
function indicates greater bloating of the reachable set, which
in turn implies a higher likelihood of safety violations. In
the rest of the section, we provide different upper bounds
for ¢(a,a)(t) using three different methods, and finally
provide an overview of these are used to rank the navigation
choices for performing safety verification using reachable sets.

Bound I: Using p-Approximation. Given point matrices

A and E, the closed-form upper bound for ¢4 g)(t) can

be computed using perturbation theory [24]. Specifically, the

bound depends on a function p,_1(z), which is a truncated

exponential series, and the 2-norm of F. It is given as follows:
dap)(t) < pa-1(|[A]l2t) %

(exp (onr (42D 1EI2) ~ 1) ()
where p,_1(z) = 72, %T, and || E'||5 is the 2-norm of matrix
E'. This monotonicity is key to extending the result to interval
matrices. Since each matrix £ within the interval matrix A
contributes differently based on its 2-norm, we can upper-
bound the effect of all such matrices by simply computing
the maximum 2-norm across the interval—denoted as ||A|2.
Formally, this is given as: sup {|| E ||2} =[] A ||2

EecA

Furthermore, the above expression can be computed in
polynomial time using the algorithm in [26]. Using this insight
(i.e., the monotonicity), we generalize the original bound to
interval matrices by replacing || E||2 with ||Al|2 in the formula.
The result gives us an upper bound on ¢(A, A)(t), which
quantifies the effect of uncertainty on the system dynamics
when that uncertainty is described by an interval matrix:

Da,0)(t) < puo1(]|A]28)
x (exp (pn—1(||All2t)[|A]]22) — 1)

We denote this upper bound as Kagstroml (following the
work of Kagstrom [24] in this domain).

“4)

Bound II: Using Condition Number. Given a matrix A and
a perturbation £ € R™*™, Kaagstrom’s result [24] provides
the following upper bound:

(b(A,E) (t) < K(SD) . eet (eK(SD)'HEHQt _ 1) (5)

Here, K (M) denotes the condition number of a matrix M,
defined as ||M]|| - ||[M ~t||. The matrix A is decomposed into
its Jordan form as SJS~!, and D is a diagonal matrix such
that ||[D71JD|2 < e. As in the previous case, the function
¢(a,E)(t) increases monotonically with || E|[o. This observa-
tion allows us to extend the result from a point perturbation E
to an interval matrix A, by taking the supremum of the 2-norm
over all matrices in A. The resulting upper bound becomes:

¢(A,A)(t) < K(SD) eet % (eK(SD)'HAHzt _ 1) (6)
We denote this upper bound as Kagstrom2.

Bound III: Using Eigenvalues. Given a matrix A and a
perturbation E € R™ ™, the result from [25] provides the
following closed-form upper bound:

ba,p)(t) < t|E| - ell Aot DTIElR)! (7)

where «(M) denotes the spectral abscissa of matrix M,
i.e., the largest real part among the eigenvalues of M. As
in previous cases, we observe that the right-hand side is
monotonically increasing with ||E||2. Using this observation,
we extend the bound to interval matrices by replacing the norm

of E with the supremum norm over the interval matrix A,
which gives: @(a.a) (t) < tHA||2,e(HAﬂzfa(A)JFHAHz)t (8)

We denote the above upper bound as Loan. We would
like to note that both [24] and [25] offer several analytical
formulas for computing upper bounds on ¢4 g)(t). In
this work, we focus on three specific formulas, as they
demonstrated the strongest performance across standard
verification benchmarks. The corresponding upper bounds—
Kagstroml, Kagstrom2, and Loan—represent our key
contributions in extending perturbation-based techniques
to interval matrices. These extensions enable principled
reasoning about navigation choices in time-critical scenarios
under uncertainty. We further note that the presented results
can also be extended to use the Frobenius norm in place of
the 2-norm. This is justified by the fact that, for any matrix
M, the Frobenius norm ||[M|r is always greater than or



equal to the 2-norm ||M]|2. In our experiments, we use the
2-norm when working with low-dimensional systems, where
its computation is tractable. However, for high-dimensional
systems where computing the 2-norm becomes expensive,
we instead use the Frobenius norm as a conservative and
computationally efficient alternative.

Ranking Navigation Choices. In the scenario considered
in this work, suppose the robot has K possible navigation
choices. Each of these choices comes with its own bounded
uncertainty, represented as interval matrices Ay, Ao, ..., Ak.
For each navigation choice i, we compute a corresponding
bloating factor b; = ¢(A, A;), which quantifies the impact
of the uncertainty A; on the nominal reachable set. This
is done using the tightest of the three available upper
bounds—Kagstroml, Kagstrom2, or Loan—whichever
yields the lowest estimate for ;. Once we have computed all
the bloating factors {b1,bs,...,bx}, we sort the navigation
choices in increasing order of these values. We then verify
the safety of the navigation choices in this order using
reachability analysis. As soon as we find a navigation choice
whose reachable set does not intersect with the unsafe region,
we terminate the verification process and select that choice
for execution. This approach helps prioritize safer navigation
options efficiently, while avoiding unnecessary computation.

Discussion. While we used the derived upper bounds—
Kagstroml, Kagstrom2, and Loan—to prioritize the or-
der in which navigation choices are verified for safety, these
bounds can also be used directly to compute the reachable set
of an uncertain linear system, without relying on other reach-
ability techniques. The approach is straightforward. First, we
compute the nominal reachable set of the system & = Ax as-
suming no uncertainty. Then, we calculate an upper bound on
the relative error due to bounded uncertainties, i.e., ¢(4,a) (t),
and use this to bloat the nominal reachable set accordingly.
Our evaluation on both low- and high-dimensional benchmarks
demonstrates that this method allows reachable sets to be
computed in just a few seconds—often in under a second for
most systems. Despite its efficiency, we currently do not use
this method to compute reachable sets directly. Instead, we use
it to rank the safety verification order of navigation choices.
This decision is due to the technique’s inherent limitation: it
treats uncertainty in a structure-agnostic way by relying solely
on matrix norm sensitivity. As a result, the reachable set is
bloated uniformly in all directions, regardless of the actual
system dynamics.
ITII. EXPERIMENTS

We compute the bloating factors using Kagstroml,
Kagstrom2, and Loan on a set of linear dynamics bench-
marks from the proceedings of ARCH workshop [27]. Exper-
iments were performed on a Lenovo ThinkPad with 17-8750H
CPU, 32 GiB memory on Ubuntu 20.04 LTS. For each bench-
mark, the initial set is chosen according to the benchmark
specifications, and reachable sets are computed over a time
horizon of 20 time units. When benchmarks include inherent
parametric uncertainties, we use those directly; otherwise, we

Benchmark Dim Pert Kagstroml | Kagstrom2 Loan
Holes 10 4 0.004 s 04 s 0.004 s
ACC 4 2 0.02 s 0.06 s 0.014 s

Lane Change 7 3 0.007 s 0.29 s 0.001 s
PK/PD 4 3 0.005 s 9.06 s 0.0012 s
Motor 7 2 0.06 s 0.11s 0.008 s
Girard I 2 2 0.002 s 0.02's 0.001 s

Girard II 5 3 0.002 s 028 s 0.0006 s
Space 6 4 0.002 s 02s 0.0006 s
Aircraft 4 2 0.01 s 0.04 s 0.01 s

TABLE I: Timing for Upper Bound Computation. Time (in seconds) taken by each
method to compute the perturbation-based bloating factor for benchmarks from [27].
Dim: system dimension; Pert: number of perturbed cells.

synthetically introduce perturbations by modifying randomly
selected entries in the system matrix.

Table I presents the runtime performance of the three
perturbation-based upper bound techniques—Kagstroml,
Kagstrom2, and Loan—across a variety of linear system
benchmarks drawn from the ARCH workshop suite [27]. For
each benchmark, we report the system’s dimensionality, the
number of perturbed entries in the dynamics matrix, and the
time taken by each method to compute the bloating factor
é(a,n)(t). As the table shows, all three methods are extremely
efficient, even for high-dimensional systems like Holes and
Lane Change. This efficiency makes them particularly suit-
able for real-time decision-making on prioritizing navigation
choices in uncertain environments. In addition to the results
presented in Table I, we further evaluated the performance
of the proposed methods (Kagstroml, Kagstrom2, and
Loan) on the ACC model [28]. While Table I focused on
the 0-20 time range, we extended the analysis to 50-70 (with
a step size of 0.1) to stress-test the methods. Our observations
show that the upper bounds computed by Kagstroml and
Kagstrom2 grew exponentially with time, whereas Loan
exhibited almost linear growth. For instance, at time step 50,
Kagstroml and Kagstrom2 yielded an upper bound of
approximately 50x the nominal value, while Loan produced
bounds around 25x. At time step 70, the upper bounds of
Kagstroml and Kagstrom2 increased to approximately
500x, while Loan remained comparatively moderate at
around 40x. This shows that, in this particular case study
(and not necessarily for other case studies), Loan produced
significantly tighter upper bounds at higher time values.

IV. CONCLUDING REMARKS AND FUTURE WORK

In safety-critical, time-sensitive scenarios, quickly selecting
the safest navigation option is essential, yet traditional methods
often rely on performing safety verification sequentially or
arbitrarily, leading to delays. In this work, we proposed a
highly efficient ranking method that prioritizes navigation
choices based on their sensitivity to uncertainty, enabling
faster decision-making. Our experiments demonstrate that the
method is extremely fast, often completing in under 0.5
seconds even on large-scale benchmarks. As future work, we
aim to extend this approach beyond prioritization to directly
compute reachable sets using our bounds and further refine
the technique to incorporate structure-aware reachability, ad-
dressing the current limitation of direction-agnostic bloating.
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