

A Formal Approach towards Safe and Stable Schedule Synthesis in Weakly Hard Control Systems

Debarpita Banerjee, Parasara Sridhar Duggirala, Bineet Ghosh, Sumana Ghosh

1. Introduction and Motivation

2. Limitations of State-of-the-Art

- Existing methods explore either stable schedule ¹ or safe schedule^{2, 3}, but not both aspects simultaneously
- [2],[3]: Ensure safety only over bounded time horizon
- 1. A structured methodology for pattern based adaptive scheduling in embedded control, S. Ghosh et al., ACM-TECS 2017.
- 2. Statistical approach to efficient and deterministic schedule synthesis for cyber-physical systems, Shengjie Xu et al., ATVA 2023.
- 3. Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard constraints, Shengjie Xu et al., ASP-DAC 2023.

3. Contributions of this Work

- First time: Addressing (stability, safety, schedulability)
- Synthesizing schedule that ensures stability and safety over unbounded time horizon with minimized WCRT
 - Ensuring exponential stability
 - Ensuring safety over infinite time horizon
 - Synthesizing optimal safe and stable schedule

4. The Proposed Method

Step 1: Ensuring Stability

Settling time + (l, ϵ) - exponential Reference Values ||x[k+l]|| ||x[k]||

- Deducing one stable (M, K)-firm constraint
- Meet at least M out of K deadlines: satisfies (l, \in) criterion

Step 2: Ensuring Safety

All hits: $111....11.... \rightarrow ideal$ behavior

Hit-miss (CES): 100....01..→ behavior with **missed deadlines**

- Safe behavior: Bounded deviation from ideal behavior
- Deducing a **Safe CES**: Satisfies stable (M, K), exhibits safe behavior

• Establishing safe behavior over infinite time horizon

Step 3: Synthesizing SMT-based Schedule

Real-time constraints +
Stability-safety constraints
+ Minimizing worst-case
response time (WCRT)

5. Experimental Evaluation —

Scalability

- Time- and compute-efficient scheduling with increased tasks/jobs
- Multiple tasks utilizing high processor bandwidth:
 Reports schedule within reasonable time

# Tasks	# Jobs	Util.	Time Taken
9	14,490	0.7 - 0.97	Less than 4s
11	18,270	0.7 – 0.98	Less than 3 min
13	20,790	0.7 - 0.97	Less than 7 min
15	46,620	0.7 - 0.85	Less than 38 min

Comparison with State-of-the-Art

State-of-the-Art: PGS, DSHT, SCS

Proposed	PGS ¹	SCS ² , DSHT ³		
Stable, safe, handles	Stable, not safe,	Safe but only for bounded		
multiple tasks, time-	high runtime	time, mostly unstable, high		
efficient, improved	overhead, fails to	runtime overhead, multiple		
schedulability	schedule mostly	task-handling is a challenge		

Proposed method outperforms all state-of-the-arts!

6. Conclusion

- We first time develop an SMT-based schedule with minimized WCRT, ensuring safety and stability for infinite time.
- We design a time-efficient, scalable scheduling approach that outperforms existing methods in a significant margin.

